Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity.

نویسندگان

  • N R Jana
  • M Tanaka
  • G h Wang
  • N Nukina
چکیده

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by polyglutamine expansion in the disease protein, huntingtin. In HD patients and transgenic mice, the affected neurons form characteristic ubiquitin-positive nuclear inclusions (NIs). We have established ecdysone-inducible stable mouse Neuro2a cell lines that express truncated N-terminal huntingtin (tNhtt) with different polyglutamine lengths which form both cytoplasmic and nuclear aggregates in a polyglutamine length- and inducer dose-dependent manner. Here we demonstrate that newly synthesized polyglutamine-expanded truncated huntingtin interacts with members of Hsp40 and Hsp70 families of chaperones in a polyglutamine length-dependent manner. Of these interacting chaperones, only Hdj-2 and Hsc70 frequently (Hdj-2 > Hsc70) co-localize with both the aggregates in the cellular model and with the NIs in the brains of HD exon 1 transgenic mice. However, Hdj-2 and Hsc70 do not co-localize with cytoplasmic aggregates in the brains of transgenic mice despite these chaperones being primarily localized in the cytoplasmic compartment. This strongly suggests that the chaperone interaction and their redistribution to the aggregates are two completely different phenomena of the cellular unfolded protein response. This unfolded protein response is also evident from the dramatic induction of Hsp70 on expression of polyglutamine-expanded protein in the cellular model. Transient overexpression of either Hdj-1 or Hsc70 suppresses the aggregate formation; however, suppression efficiency is much higher in Hdj-1 compared with Hsc70. Overexpression of Hdj-1 and Hsc70 is also able to protect cell death caused by polyglutamine-expanded tNhtt and their combination proved to be most effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation.

The expression of polyglutamine-expanded mutant proteins in Huntington's disease and other neurodegenerative disorders is associated with the formation of intraneural inclusions. These aggregates could potentially cause cellular toxicity by sequestering essential proteins possessing normal polyQ repeats, including the transcription factors TBP and CBP. We show, in vitro and in cells, that monom...

متن کامل

Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation.

The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with tru...

متن کامل

Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease.

Polyglutamine (polygln) diseases are a group of inherited neurodegenerative disorders characterized by protein misfolding and aggregation. Here, we investigate the role in polygln disease of heat shock proteins (Hsps), the major class of molecular chaperones responsible for modulating protein folding in the cell. In transfected COS7 and PC12 neural cells, we show that Hsp40 and Hsp70 chaperones...

متن کامل

Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model.

In yeast, aggregation and toxicity of the expanded polyglutamine fragment of human huntingtin strictly depend on the presence of the endogenous self-perpetuating aggregated proteins (prions), which contain glutamine/asparagine-rich domains. Some chaperones of the Hsp100/70/40 complex, modulating propagation of yeast prions, were also reported to influence polyglutamine aggregation in yeast, but...

متن کامل

Suppression of protein aggregation by chaperone modification of high molecular weight complexes

Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington's disease. The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to suppress aggregation and amel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 9 13  شماره 

صفحات  -

تاریخ انتشار 2000